Learning

Itasca Educational Partnership

ITASCA Academics

Software Tutorials

Generating Videos via Plots

This tutorial reviews how you can generate movies from FLAC3D plots. It is also applicable for 3DEC, PFC, and UDEC.

Using Python in Itasca Software

Python scripting is built into current versions of FLAC3D, 3DEC, and PFC. This video introduces users of Itasca software to working with Python and FLAC3D, 3DEC, and PFC types (zones, blocks, ball, structural elements, and so on). The Itasca Module, a comparison with FISH scripting, and object-oriented and array-oriented interfaces are reviewed and demonstrated.

FLAC3D 7.0 Geometry Painting Tutorial

This tutorial will show how to paint zone data onto an imported geometric surface in FLAC3D.

Technical Papers

Tunneldrivning i heterogena förhållanden

InledningProblem: Brist på erfarenhet av tunneldrivning i heterogena förhållanden med konventionell uttagsteknik (borrning och sprängning).

Mål: Fördjupa kunskapen och förståelse av brott och deformationsmönster vid dessa förhållanden.

FLAC3D Soil-structure Model of a Building

A FLAC3D model of a raft foundation, multi-story building was used to assess the possibility of eliminating piles or jet-grouting columns from its initial design in favor of a thicker foundation. This would provide considerable savings in terms of costs, time, and site management.

GPR-inferred fracture aperture widening in response to a high-pressure tracer injection test at the Äspö Hard Rock Laboratory, Sweden

We assess the performance of the Ground Penetrating Radar (GPR) method in fractured rock formations of very low transmissivity (e.g. T ≈ 10−9–10−10 m2/s for sub-mm apertures) and, more specifically, to image fracture widening induced by high-pressure injections. A field-scale experiment was conducted at the Äspö Hard Rock Laboratory (Sweden) in a tunnel situated at 410 m depth. The tracer test was performed within the most transmissive sections of two boreholes separated by 4.2 m. The electrically resistive tracer solution composed of deionized water and Uranine was expected to lead to decreasing GPR reflections with respect to the saline in situ formation water.

Latest News
  • Itasca at Balkanmine 2025! Itasca is pleased to announce its participation in the Balkanmine 2025 Conference. Our experts Lauriane...
    Read More
  • Summer Intern Spotlight ITASCA Minneapolis had another group of excellent summer interns this year across our consulting, software,...
    Read More
  • Seamless Integration of Site Data for Improved Mining Analysis Now Available for IMAT: Seamless Integration of Site Data for Improved Mining Analysis...
    Read More