Learning

NEW TRAINING: Meshing in ITASCA Software
Online
Dec 2, 2025 - Dec 3, 2025

This introductory training course offers a comprehensive foundation in geotechnical modeling, enabling participants to identify various mesh types, effectively use the built-in tools in FLAC2D/3D and 3DEC, and gain practical experience with BlockRanger and Griddle for advanced mesh generation.


Itasca Educational Partnership

ITASCA Academics

Software Tutorials

Generate a Hybrid Mesh by Combining Block Ranger and GVol

This tutorial will demonstrate a method to create a hybrid mesh of tetrahedral zones to model the rock mass and hexahedral zones to model a concrete liner. Hexahedral zones for the liner are preferred in order to more accurately capture plastic strains in this region. The meshing is done by utilizing the Itasca Griddle volume mesher plug-in for Rhino 3D. Importing the final mesh into FLAC3D, for future finite volume modeling, is also demonstrated.

FLAC3D 6.0 PFC Plugin Punch
Tutorial: Simple Slope Stability

Using UDEC 6 and the shear-reduction method to calculate the factor-of-safety, this tutorial will show you how to analyze the stability of a simple slope containing: (1) no discrete jointing (continuum), (2) fully-continuous jointing (discrete blocks), and (3) noncontinuous, en echelon jointing.

Technical Papers

Graph-based flow modeling approach adapted to multiscale discrete-fracture-network models

In this study, we address the issue of using graphs to predict flow as a fast and relevant substitute to classical DFNs. We consider two types of graphs, whether the nodes represent the fractures or the intersections between fractures.

A Calibrated Predictive Geochemical Model of Leaching and Attenuation Reactions in a Mine Pit Lake

A geochemical model was developed to predict future water quality of the Cove pit lake in support of site closure and regulatory permitting.

Connectivity, permeability, and channeling in randomly distributed and kinematically defined discrete fracture network models

A major use of DFN models for industrial applications is to evaluate permeability and flow structure in hardrock aquifers from geological observations of fracture networks. The relationship between the statistical fracture density distributions and permeability has been extensively studied, but there has been little interest in the spatial structure of DFN models, which is generally assumed to be spatially random (i.e., Poisson). In this paper, we compare the predictions of Poisson DFNs to new DFN models where fractures result from a growth process defined by simplified kinematic rules for nucleation, growth, and fracture arrest.

Latest News
  • Itasca at Balkanmine 2025! Itasca is pleased to announce its participation in the Balkanmine 2025 Conference. Our experts Lauriane...
    Read More
  • Summer Intern Spotlight ITASCA Minneapolis had another group of excellent summer interns this year across our consulting, software,...
    Read More
  • Seamless Integration of Site Data for Improved Mining Analysis Now Available for IMAT: Seamless Integration of Site Data for Improved Mining Analysis...
    Read More

Upcoming Events
2 Dec
NEW TRAINING: Meshing in ITASCA Software
This introductory training course offers a comprehensive foundation in geotechnical modeling, enabling participants to identify various... Read More