Technical Papers

FLAC3D mesh and zone quality

ABSTRACT:

Mesh quality is crucial for the stability, accuracy, and fast convergence of numerical simulations. However, given the geometrical complexity of some models and the tools available for mesh creation, it is often necessary to accept meshes that deviate significantly from the known ideal shape. Since mesh generation can be a very time-consuming process, it is also necessary to be able to judge if a given mesh will perform well enough for a given model or if more effort needs to be made to improve its quality. There are many well-understood rules of thumb for judging mesh quality in Finite-Element applications, but these rules do not apply to the Lagrangian finite-volume with mixed-discretization approach used by FLAC3D zones. The goal of this study is to determine simple metrics that allow a user to judge how deformed the initial shape of FLAC3D zones can be before they begin to significantly affect the quality of the solution.

DOWNLOAD PAPER

Abbasi, B., D. Russell, and R. Taghavi (2013). “FLAC3D mesh and zone quality,” Continuum and Distinct Element Numerical Modeling in Geomechanics, Zhu, Detournay, Hart, and Nelson (eds.), Paper: 11-02, Itasca International Inc., Minneapolis, 12 pages, ISBN 978-0-9767577-3-3.

Latest News
  • Now Available from ITASCA: Innovative Machine Learning Tool for FLAC3D/FLAC2D V9.2 Experience the Future of Geotechnical Modeling with ITASCA Software V9.2: Introducing Machine Learning Models...
    Read More
  • Experience the Future of Geotechnical Modeling with ITASCA Software V9.2 Experience the Future of Geotechnical Modeling with ITASCA Software V9.2: Introducing Machine Learning Models and...
    Read More
  • Thank You to our Summer Interns ITASCA Minneapolis is lucky to have welcomed nine amazing and dedicated summer interns in our...
    Read More

Upcoming Events
3 Dec
Webinar: 3DEC Day
Join us on the 3rd of December for 3DEC Day! Dr. Jim Hazzard, ITASCA Software Manager, will present: What is 3DEC, when to use it, and ... Read More